Abstract

In northwest Turkey, ophiolitic meta-gabbros are exposed on the Kazdag Massif located in the southern part of the Biga Peninsula. Trace element composition of rutile and Zr-in-rutile temperatures were determined for meta-gabbros from the Kazdag Massif. The Zr content of all rutiles range from 176 to 428 ppm and rutile grains usually have a homogeneous Zr distribution. The rutile grains from studied samples in the Kazdag Massif are dominated by subchondritic Nb/Ta (11–19) and Zr/Hf ratios (20–33). Nb/Ta and Zr/Hf show positive correlation, which is probably produced by silicate fractionation. The Nb/Ta and Zr/Hf ratios increase with a decrease in Ta and Hf contents. The core of rutile grains are generally characterized by low Nb/Ta ratios of 17–18 whereas the rims exhibit relatively high Nb/Ta ratios of 19–23. Trace element analyses in rutile suggest that these rutile grains were grown from metamorphic fluids. The P-T conditions of meta-gabbros were estimated by both Fe–Mg exchange and Zr-in-rutile thermometers, as well as by the Grt-Hb-Plg-Q geothermobarometer. The temperature range of 639 to 662 °C calculated at 9 kbar using the Zr-in-rutile thermometer is comparable with temperature estimates of the Fe-Mg exchange thermometer, which records amphibolite-facies metamorphism of intermediate P-T conditions. The P-T conditions of meta-ophiolitic rocks suggest that they occur as a different separate higher-pressure tectonic slice in the Kazdag metamorphic sequence. Amphibolite-facies metamorphism resulted from northward subduction of the Izmir-Ankara branch of the Neo-Tethyan Ocean under the Sakarya Zone. Metamorphism was followed by internal imbrication of the Kazdag metamorphic sequence resulting from southerly directed compression during the collision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.