Abstract

Micro particle‐induced X‐ray emission (PIXE) is a nondestructive elemental analysis technique that can be used to map the distribution of elements with a spatial resolution of ±4 μm2 and a penetration depth of ±2 μm in a calcite matrix. To test its potential to improve our understanding of trace element distribution in foraminifera shells, we mapped the Mg distribution across individual chambers of the planktonic species Globigerinoides ruber. G. ruber shells were picked from equatorial Atlantic surface sediments (Sierra Leone Rise). They ranged from well‐preserved to heavily dissolved tests. The mapping of trace elements across test chambers made it possible to discriminate between variability inherent to the shell material and heterogeneity linked to contaminant phases. Contaminating mineral phases were characterized by high Mg concentrations (Mg/Ca = 19.7 mmol/mol) and high levels of Si, Al, and Fe. Mg/Ca values of well‐preserved shells ranged from 3.9 to 4.5 mmol/mol. The Mg to Ca ratios of partially dissolved shells varied between 1.8 and 3.4 mmol/mol between outer and inner chambers. Low and homogeneous Mg/Ca values of 2.0 and 2.3 mmol/mol were determined for chambers of a severely dissolved test.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call