Abstract

BackgroundHigh levels of ammonia and the presence of sulphide have major impacts on microbial communities and are known to cause operating problems in anaerobic degradation of protein-rich material. Operating strategies that can improve process performance in such conditions have been reported. The microbiological impacts of these are not fully understood, but their determination could help identify important factors for balanced, efficient operation. This study investigated the correlations between microbial community structure, operating parameters and digester performance in high-ammonia conditions.MethodContinuous anaerobic co-digestion of household waste and albumin was carried out in laboratory-scale digesters at high ammonia concentrations (0.5–0.9 g NH3/L). The digesters operated for 320 days at 37 or 42 °C, with or without addition of a trace element mixture including iron (TE). Abundance and composition of syntrophic acetate-oxidising bacteria (SAOB) and of methanogenic and acetogenic communities were investigated throughout the study using 16S rRNA and functional gene-based molecular methods.ResultsSyntrophic acetate oxidation dominated methane formation in all digesters, where a substantial enhancement in digester performance and influence on microbial community by addition of TE was shown dependent on temperature. At 37 °C, TE addition supported dominance and strain richness of Methanoculleus bourgensis and altered the acetogenic community, whereas the same supplementation at 42 °C had a low impact on microbial community structure. Both with and without TE addition operation at 42 °C instead of 37 °C had low impact on digester performance, but considerably restricted acetogenic and methanogenic community structure, evenness and richness. The abundance of known SAOB was higher in digesters without TE addition and in digesters operating at 42 °C. No synergistic effect on digester performance or microbial community structure was observed on combining increased temperature with TE addition.ConclusionsOur identification of prominent populations related to enhanced performance within methanogenic (high dominance and richness of M. bourgensis) and acetogenic communities are valuable for continued research and engineering to improve methane production in high-ammonia conditions. We also show that a temperature increase of only 5 °C within the mesophilic range results in an extreme dominance of one or a few species within these communities, independent of TE addition. Furthermore, functional stable operation was possible despite low microbial temporal dynamics, evenness and richness at the higher temperature.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-015-0328-6) contains supplementary material, which is available to authorized users.

Highlights

  • High levels of ammonia and the presence of sulphide have major impacts on microbial communities and are known to cause operating problems in anaerobic degradation of protein-rich material

  • Our identification of prominent populations related to enhanced performance within methanogenic and acetogenic communities are valuable for continued research and engineering to improve methane production in high-ammonia conditions

  • The microbial community in this well-performing digester was distinguished by high abundance and high population richness of M. bourgensis, emphasising the importance of this methanogenic group for successful operation in high-ammonia, mesophilic conditions

Read more

Summary

Introduction

High levels of ammonia and the presence of sulphide have major impacts on microbial communities and are known to cause operating problems in anaerobic degradation of protein-rich material. This study investigated the correlations between microbial community structure, operating parameters and digester performance in high-ammonia conditions. The inhibitory effects of ammonia and trace element deficiency are considered to be most pronounced in latter parts of the degradation process, which involve the activity of hydrogen/formate-utilising (hydrogenotrophic) or acetate-utilising (aceticlastic) methanogens. This in turn influences reaction pathways higher up in the degradation chain [9]. Genetic and enzymatic studies have indicated that several species with known syntrophic acetate-oxidising capability use the Wood– Ljungdahl pathway, both in an oxidative and a reductive way, and are assigned to the acetogenic bacteria [21,22,23,24]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call