Abstract

The time evolution of the trace distance between quantum states of a qubit which is placed under the influence of stochastic dephasing is investigated within the framework of the stochastic Liouville equation. When stochastic dephasing is subject to the homogeneous Gauss-Markov process, the trace distance is exactly calculated in the presence of the initial correlation between the qubit and the stochastic process, where the stochastic process is inevitably a nonstationary process. It is found that even the initial correlation with the classical environment can make the trace distance greater than the initial value if stochastic dephasing causes the slow modulation of the qubit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.