Abstract

Nerve agents are often used at the military warfront, where diesel is a very common interferant. In the present work, a group of surface acoustic wave (SAW) sensors, called E-Nose with dissimilar sensing layers is developed for the recognition of the mixture of diesel and dimethyl methylphosphonate (DMMP) vapors. The exposure of DMMP and diesel vapors is kept at ppb and ppm levels respectively. Varied response patterns of DMMP and diesel vapors were obtained by SAW E-nose. Principal component analysis (PCA) has been used to extract features from the response curves of SAW sensors. Artificial Neural Network pattern recognition has been implemented to identify the precise detection of DMMP vapors in the binary mixture of DMMP and diesel. The effect of pre-processing (using PCA) the raw data before feeding it to artificial neural network is also studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call