Abstract

The paper establishes error orders for integral limit approximations to the traces of products of truncated Toeplitz operators generated by integrable real symmetric functions defined on the real line. These approximations and the corresponding error bounds are of importance in the statistical analysis of continuous-time stationary processes (asymptotic distributions and large deviations of Toeplitz-type quadratic functionals, estimation of the spectral parameters and functionals, etc.). An explicit second-order asymptotic expansion is found for the trace of a product of two truncated Toeplitz operators generated by the spectral densities of continuous-time stationary fractional Riesz–Bessel motions. The order of magnitude of the second term in this expansion is shown to depend on the long-memory parameters of the processes. Also, it is shown that the pole in the first-order approximation is removed by the second-order term, which provides a substantially improved approximation to the original functional.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.