Abstract

Early Cambrian black shales of South China not only host important sponge, arthropod and other soft-bodied fossils that have helped to trace early metazoan diversification, but also show extreme enrichments of a number of trace metals in particular Ni, Mo and V. In this study, we use a new approach by analyzing rare earth elements in kerogen extracted from the black shales, together with a number of redox-sensitive trace element compositions and total organic carbon (TOC) concentrations in an early Cambrian black shale sequence in Zunyi, Guizhou province, South China, to place better constraints on the oceanic redox conditions and the origin of the extreme metal enrichment.Our data show significant negative Ce anomalies (Ce/Ce* as low as 0.4) occurring in kerogen, which indicate an oxygenated surface environment of primary productivity in consistent with the concept that the organic matter is mainly derived from organisms in the euphotic zone. Mass balance calculation suggests that the kerogen-associated REE can dominate the measured black shale REE budget, while similarity between our measured REE patterns and those of similarly aged phosphorites indicates that the REE content of ancient phosphorites may have also derived initially from organic matter.The redox-sensitive trace elements, such as U, V, Mo, and their ratios of U/Al, V/Al and Mo/Al in black shales show different correlation patterns with TOC contents. The upper black shales show a good metal/TOC correlation, but such a correlation is absent in the lower part. The lower black shales exhibit much higher metal enrichments compared to Black Sea sulphidic (euxinic) sediment. This is taken to indicate the presence of sulphidic bottom waters during the deposition of the lower black shales, including the Ni–Mo ore layer. In contrast, anoxic, non-sulphidic conditions occurred during the deposition of the upper black shales.Taking all these geochemical data together, we suggest that the early Cambrian South China seaway was strongly stratified and stagnant, and that euxinic bottom water conditions may have led to enrichment of the redox-sensitive metals such as U, V and Mo in the lower black shales, and in one case the occurrence of a polymetallic Ni–Mo sulphide ore bed bearing an extraordinarily extreme metal enrichment, which, according to the Mo/TOC and Ni/TOC ratios and much other geochemical evidence, may have been additionally influenced by hydrothermal input of metals within the rift basin as suggested by a number of previous studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.