Abstract

A rapid and sensitive liquid chromatography (LC) quadrupole time of flight (QTOF) method has been developed for the determination of resin acid concentrations in aqueous pulp and paper effluent related samples. Calibration R2 of ≥0.995 for twelve resin acids, namely dehydroabietic, 8(14)-abietenic, dihydroisopimaric, levopimaric, neoabietic, pimaric, sandaracopimaric, abietic, isopimaric, palustric, chlorodehydroabietic, and dichlorodehydroabietic acids, was demonstrated in the range 1 µgL−1 to 40 µgL−1. An improved lower limit of quantitation was achieved without use of complex sample extraction and clean-up procedures undertaken by other published methods. Excellent precision and accuracy results were achieved for dehydroabietic, chlorodehydroabietic, dichlorodehydroabietic, isopimaric (integrated inclusive of all C20H30O2 resin acids), dihydroisopimaric and 8(14)-abietenic resin acids, with t-99 percentile detection limits spanning the range 0.05 to 0.07 µgL−1. While measurement for the C20H30O2 resin acids by isopimaric equivalence is considered semi-quantitative and could be an under estimate for the abietic acid component, the developed method demonstrated clear advantage over time consuming, hazardous, and unstable derivatization procedures used for gas chromatography and capillary electrophoresis. The developed LC/QToF method was successfully transferred to an LC triple quadrupole mass spectrometer for routine high throughput trace level analysis. Real world samples, including sea water and estuary water, demonstrated excellent spike recoveries by this procedure, indicating that the method is well suited to the monitoring of industrially derived resin acids in environmental surface waters. While no interferences were observed during routine sample analysis using myristic-1-13C acid and palmitic-1-13C acid internal standards, these were later substituted by myristic-d27 and palmitic-d31 acid in order to improve method robustness for environmental samples where endogenous parent fatty acids could be present.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.