Abstract

Zirconium phosphate-absorbed ammonia gas and the ammonia concentration (pressure) decreased to 2 ppm (ca. 20 Pa). However, it has not been clarified what the equilibrium pressure of zirconium phosphate is during ammonia gas ab/desorption. In this study, the equilibrium pressure of zirconium phosphate during ammonia ab/desorption was measured using cavity ring-down spectroscopy (CRDS). For ammonia-absorbed zirconium phosphate, a two-step equilibrium plateau pressure was observed during the ammonia desorption in gas. The value of the higher equilibrium plateau pressure at the desorption process was about 25 mPa at room temperature. If the standard entropy change (ΔS0) of the desorption process is assumed to be equal to the standard molar entropy of ammonia gas (192.77 J/mol(NH3)/K), the standard enthalpy change (ΔH0) is about -95 kJ/mol(NH3). In addition, we observed hysteresis in zirconium phosphate at different equilibrium pressures during ammonia desorption and absorption. Finally, the CRDS system allows the ammonia equilibrium pressure of a material in the presence of water vapor equilibrium pressure, which cannot be measured by the Sievert-type method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call