Abstract

We propose trace abstraction modulo probability, a proof technique for verifying high-probability accuracy guarantees of probabilistic programs. Our proofs overapproximate the set of program traces using failure automata, finite-state automata that upper bound the probability of failing to satisfy a target specification. We automate proof construction by reducing probabilistic reasoning to logical reasoning: we use program synthesis methods to select axioms for sampling instructions, and then apply Craig interpolation to prove that traces fail the target specification with only a small probability. Our method handles programs with unknown inputs, parameterized distributions, infinite state spaces, and parameterized specifications. We evaluate our technique on a range of randomized algorithms drawn from the differential privacy literature and beyond. To our knowledge, our approach is the first to automatically establish accuracy properties of these algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.