Abstract

The present research aims to determine whether the application of non‐pigmented ciliary epithelium cells derived extracellular vesicles to human trabecular meshwork cells affects the formation and secretion of collagen type I to the extracellular matrix formation. Following the extraction of non‐pigmented ciliary epithelium derived extracellular vesicles by a precipitation method, their size and concentration were determined using tunable resistive pulse sensing technology. Extracellular vesicles were incubated with trabecular meshwork cells for 3 days. Morphological changes of collagen type I in the extracellular matrix of trabecular meshwork cells were visualized using confocal microscopy and scanning electron microscopy. A Sirius Red assay was used to determine the total amount of collagen. Finally, collagen type I expression levels in the extracellular matrix of trabecular meshwork cells were quantified by cell western analysis. We found that non‐pigmented ciliary epithelium extracellular vesicles were very effective at preventing collagen fibres formation by the trabecular meshwork cells, and their secretion to the extracellular matrix was significantly reduced (P < .001). Morphological changes in the extracellular matrix of trabecular meshwork cells were observed. Our study indicates that non‐pigmented ciliary epithelium extracellular vesicles can be used to control collagen type I fibrillogenesis in trabecular meshwork cells. These fibrils net‐like structure is responsible for remodelling the extracellular matrix. Moreover, we suggest that targeting collagen type I fibril assembly may be a viable treatment for primary open‐angle glaucoma abnormal matrix deposition of the extracellular matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call