Abstract

Many patients with high fragility fracture risk do not have a sufficiently low bone mineral density (BMD) to become eligible for osteoporosis treatment. They often have deteriorated bone microarchitecture despite a normal or only mildly abnormal BMD. We sought to examine the beta version of the trabecular bone score (TBS) algorithm for the hip: TBS Hip, an indirect index of bone microarchitecture, and assess if TBS Hip brings complementary information to other bone quality indices such as BMD and bone turnover markers (BTMs) to further improve identifying individuals who are at high risk for fractures. In this analysis, we considered baseline TBS Hip at total hip, femoral neck, and greater trochanter, TBS at lumbar spine, BMD at all of these skeletal sites, and BTMs in 132 postmenopausal women who were residents of long-term care (LTC) facilities enrolled in a randomized placebo-controlled osteoporosis clinical trial. On average, participants were 85.2years old and had a BMI of 26.9kg/m2. The correlation coefficient between BMD and TBS Hip at total hip, femoral neck, and greater trochanter was 0.50, 0.32, and 0.39 respectively (all p < 0.0001). The correlation coefficient between BMD and lumbar spine TBS was 0.52 (p < 0.0001). There was no statistically significant correlation between BTMs with TBS at lumbar spine or TBS Hip at total hip, femoral neck, and greater trochanter. Among older women residing in LTC facilities, there was a moderate correlation between measures of BMD and TBS Hip at total hip, femoral neck, and greater trochanter, suggesting TBS Hip may provide complementary information to BMD .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call