Abstract

Background and objectivesNon-small cell lung cancer (NSCLC) is a global health concern. NSCLC treatment outcomes are generally poor due to treatment resistance or toxicity. Ferroptosis is a novel cell death triggered by iron accumulation, reactive oxygen species (ROS), and lipid peroxidation. Ferroptosis may kill cancer cells, particularly those resistant to apoptosis. Materials and methodsThe Cell Counting Kit-8 assay assessed NSCLC cell viability after trabectedin treatment. Flow cytometry with Annexin V-FITC staining evaluated cell death. ROS, iron, lipid peroxidation, and GSH levels were measured using commercial kits. qRT-PCR and western blots evaluated messenger RNA and protein levels. Proteins were inhibited using short interfering RNA transfection and specific inhibitors. ResultsTrabectedin was cytotoxic to NSCLC cells regardless of p53 status. Trabectedin upregulated iron, ROS, and lipid peroxidation in NSCLC cells, causing ferroptosis. Trabectedin increases iron and ROS levels by upregulating transferrin receptor 1 and the HIF-1/IRP1 axis. In NSCLC cells, trabectedin suppresses glutathione peroxidase 4, followed by the Keap1/Nrf2 axis. ConclusionsOur findings imply that trabectedin may treat NSCLC effectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call