Abstract

Time-resolved laser-induced incandescence (TR-LII) was applied for the determination of particle sizes during carbon-particle formation from supersaturated atomic carbon vapor that was generated by laser photolysis of carbon suboxide (C3O2) at room temperature. Thus, the solid carbon particles were formed under hydrogen-free conditions. The TR-LII technique was used for in situ size measurement of growing carbon particles and samples of final particles were analyzed by transmission electron microscopy (TEM). It was found that the particles grow to a final size of 4–12 nm within 0.02–1 ms. The properties of the obtained particles depend on the initial conditions in the reaction volume, i.e. concentration of carbon suboxide, pressure and type of gas diluter, photolysis wavelength, and laser pulse energy. The comparison of TR-LII and TEM particle sizing results yields information about the effective thermal energy accommodation coefficients for He, Ar, CO, and C3O2 molecules on carbon particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.