Abstract

Magnetic Resonance Imaging (MRI) has been proven to be an efficient way to diagnose Alzheimer's disease (AD). Recent dramatic progress on deep learning greatly promotes the MRI analysis based on data-driven CNN methods using a large-scale longitudinal MRI dataset. However, most of the existing MRI datasets are fragmented due to unexpected quits of volunteers. To tackle this problem, we propose a novel Temporal Recurrent Generative Adversarial Network (TR-GAN) to complete missing sessions of MRI datasets. Unlike existing GAN-based methods, which either fail to generate future sessions or only generate fixed-length sessions, TR-GAN takes all past sessions to recurrently and smoothly generate future ones with variant length. Specifically, TR-GAN adopts recurrent connection to deal with variant input sequence length and flexibly generate future variant sessions. Besides, we also design a multiple scale & location (MSL) module and a SWAP module to encourage the model to better focus on detailed information, which helps to generate high-quality MRI data. Compared with other popular GAN architectures, TR-GAN achieved the best performance in all evaluation metrics of two datasets. After expanding the Whole MRI dataset, the balanced accuracy of AD vs. cognitively normal (CN) vs. mild cognitive impairment (MCI) and stable MCI vs. progressive MCI classification can be increased by 3.61% and 4.00%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call