Abstract

Molecular recognition of N-terminal targeting peptides is the most common mechanism controlling the import of nuclear-encoded proteins into mitochondria and chloroplasts. When experimental information is lacking, computational methods can annotate targeting peptides, and determine their cleavage sites for characterizing protein localization, function, and mature protein sequences. The problem of discriminating mitochondrial from chloroplastic propeptides is particularly relevant when annotating proteomes of photosynthetic Eukaryotes, endowed with both types of sequences. Here, we introduce TPpred3, a computational method that given any Eukaryotic protein sequence performs three different tasks: (i) the detection of targeting peptides; (ii) their classification as mitochondrial or chloroplastic and (iii) the precise localization of the cleavage sites in an organelle-specific framework. Our implementation is based on our TPpred previously introduced. Here, we integrate a new N-to-1 Extreme Learning Machine specifically designed for the classification task (ii). For the last task, we introduce an organelle-specific Support Vector Machine that exploits sequence motifs retrieved with an extensive motif-discovery analysis of a large set of mitochondrial and chloroplastic proteins. We show that TPpred3 outperforms the state-of-the-art methods in all the three tasks. The method server and datasets are available at http://tppred3.biocomp.unibo.it. gigi@biocomp.unibo.it Supplementary data are available at Bioinformatics online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.