Abstract

Mechanical metamaterials (MMs) are artificially designed structures with superior properties that originate from unit cells. Compared with the widely studied single-morphology MMs, multi-morphology interpenetrating MMs offer, by the virtue of their fused lattice characteristics, the potential for customizable mechanical properties and new application fields. Inspired by the fact that the isosurface of triply periodic minimal surfaces (TPMS) can divide a lattice into two independent regions, this paper proposes a novel TPMS-based strut-shell interpenetrating (TSSI) lattice metamaterial. This study demonstrates that the TSSI lattice has a larger specific surface area than traditional TPMS lattices. Compared with the volume fraction, the fusion proportion parameter is not only more conducive to effectively adjusting the mechanical properties in a wide range and controlling the anisotropy of the lattice metamaterials to achieve elastic isotropy but significantly changes the dominant mechanism of deformation under uniaxial and shear loads. Moreover, the TSSI lattice metamaterial can avoid sharp stress drops due to the mutual support and wrapping of the internal interpenetrating lattices after failure, resulting in a more stable energy absorption efficiency and a maximum increase in energy absorption of 74%. This work provides new opportunities to design lightweight components with a wide range of customizable mechanical properties and superior energy absorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.