Abstract

Groundwater assessment programs frequently require total petroleum hydrocarbon (TPH) analyses (Methods 8015M and 418.1). TPH analyses are often unreliable indicators of water quality because these methods are not constituent-specific and are vulnerable to significant sources of positive interferences. These positive interferences include: (a) non-dissolved petroleum constituents; (b) soluble, non-petroleum hydrocarbons (e.g., biodegradation products); and (c) turbidity, commonly introduced into water samples during sample collection. In this paper, we show that the portion of a TPH concentration not directly the result of water-soluble petroleum constituents can be attributed solely to these positive interferences. To demonstrate the impact of these interferences, we conducted a field experiment at a site affected by degraded crude oil. Although TPH was consistently detected in groundwater samples, BTEX was not detected. PNAs were not detected, except for very low concentrations of fluorene (<5 ug/1). Filtering and silica gel cleanup steps were added to sampling and analyses to remove particulates and biogenic by-products. Results showed that filtering lowered the Method 8015M concentrations and reduced the Method 418.1 concentrations to non-detectable. Silica gel cleanup reduced the Method 8015M concentrations to non-detectable. We conclude from this study that the TPH results from groundwater samples are artifacts of positive interferences causedmore » by both particulates and biogenic materials and do not represent dissolved-phase petroleum constituents.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call