Abstract

The lack of cancer cell specificity and the occurrence of multidrug resistance (MDR) are two major obstacles in the treatment of hepatocellular carcinoma (HCC). To tackle these challenges, a novel nanoparticle (NP)-based drug delivery system (DDS) with a core/shell structure consisted of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS)-galactose (Gal)/polydopamine (PDA) is fabricated. The NP is loaded with doxorubicin (DOX) and a nitric oxide (NO) donor N,N'-di-sec-butyl-N,N'-dinitroso-1,4-phenylenediamine (BNN) sensitive to heat to afford NO-DOX@PDA-TPGS-Gal. The unique binding of Gal to asialoglycoprotein receptor (ASGPR) and the pH-sensitive degradation of NP ensure the targeted transportation of NP into liver cells and the release of DOX in HCC cells. The near-infrared (NIR) light further facilitates DOX release and initiates NO generation from BNN due to the photothermal property of PDA. In addition to the cytotoxicity contributed by DOX, NO, and heat, TPGS and NO act as MDR reversal agents to inhibit P-glycoprotein (P-gp)-related efflux of DOX by HepG2/ADR cells. The combined chemo-photothermal therapy (chemo-PTT) by NO-DOX@PDA-TPGS-Gal thus shows potent anti-cancer activity against drug-resistant HCC cells in vitro and in vivo and significantly prolongs the life span of drug-resistant tumor-bearing mice. The present work provides a useful strategy for highly targeted and MDR reversal treatment of HCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call