Abstract
Herein pH-sensitive nanogels (NG1) and P-glycoprotein-repressive nanogels (NG2) were prepared by copolymerization between an ortho ester crosslinker (OEAM) and tocopheryl polyethylene glycol succinate (TPGS)-free or conjugated dextran. Nanogels with or without TPGS possessed a uniform diameter (∼180 nm) and excellent stability in various physiological environments. Doxorubicin (DOX) was successfully loaded into NG1 and NG2 to give NG1/DOX and NG2/DOX, both of them showed appropriate drug release profiles under mildly acidic conditions (pH 5.0). NG2/DOX possessed higher drug enrichment and lethality than NG1/DOX did on MCF-7/ADR cells. Analysis of corresponding index of efflux activity showed that NG2 could induce depolarization of mitochondrial membrane and interfere with ATP metabolism. NG2/DOX also displayed increased penetration and growth inhibition on MCF-7/ADR multicellular spheroids. These results demonstrated that pH-sensitive TPGS-functionalized nanogels (NG2) as drug carriers had great potential to suppress drug efflux in MCF-7/ADR cells and even overcome MDR on cancer cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.