Abstract
Loss of TFAP2C in mouse leads to developmental defects in the extra-embryonic compartment with lethality at embryonic day (E)7.5. To investigate the requirement of TFAP2C in later placental development, deletion of TFAP2C was induced throughout extra-embryonic ectoderm at E6.5, leading to severe placental abnormalities caused by reduced trophoblast population and resulting in embryonic retardation by E8.5. Deletion of TFAP2C in TPBPA(+) progenitors at E8.5 results in growth arrest of the junctional zone. TFAP2C regulates its target genes Cdkn1a (previously p21) and Dusp6, which are involved in repression of MAPK signaling. Loss of TFAP2C reduces activation of ERK1/2 in the placenta. Downregulation of Akt1 and reduced activation of phosphorylated AKT in the mutant placenta are accompanied by impaired glycogen synthesis. Loss of TFAP2C led to upregulation of imprinted gene H19 and downregulation of Slc38a4 and Ascl2. The placental insufficiency post E16.5 causes fetal growth restriction, with 19% lighter mutant pups. Knockdown of TFAP2C in human trophoblast choriocarcinoma JAr cells inhibited MAPK and AKT signaling. Thus, we present a model where TFAP2C in trophoblasts controls proliferation by repressing Cdkn1a and activating the MAPK pathway, further supporting differentiation of glycogen cells by activating the AKT pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.