Abstract

Pathogen-based cancer vaccine is a promising immunotherapeutic weapon to stimulate cancer immunosuppressive state. Toxoplasma gondii is a potent immunostimulant, and low-dose infection was linked to cancer resistance. Our goal was to evaluate the therapeutic antineoplastic activity of autoclaved Toxoplasma vaccine (ATV) against Ehrlich solid carcinoma (ESC) in mice in reference to and in combination with low-dose cyclophosphamide (CP), a cancer immunomodulator. Mice inoculation with ESC was followed by applying different treatment modalities including ATV, CP, and CP/ATV. We evaluated the impact of the different treatments on liver enzymes and pathology, tumor weight, volume, and histopathological changes. Using immunohistochemistry, we evaluated CD8+ T cell, FOXP3+ Treg, CD8+/Treg outside and inside ESC, and angiogenesis. Results showed significant tumor weights and volumes reduction with all treatments with 13.3% inhibition of tumor development upon combined CP/ATV use. Significant necrosis and fibrosis were noted in ESC by all treatments with improved hepatic functions versus non-treated control. Although ATV was almost equivalent to CP in tumor gross and histopathology, it promoted an immunostimulatory activity with significant Treg cells depletion outside ESC and CD8+ T cells infiltration inside ESC with higher CD8+ T/Treg ratio inside ESC superior to CP. Combined with CP, ATV exhibited significant synergistic immunotherapeutic and antiangiogenic action compared to either treatment alone with significant Kupffer cells hyperplasia and hypertrophy. Exclusively, therapeutic antineoplastic and antiangiogenic activity of ATV against ESC was verified that boosted CP immunomodulatory action which highlights a novel biological cancer immunotherapeutic vaccine candidate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.