Abstract

Toxoplasma gondii infects virtually any nucleated cell and resides inside a non-phagocytic vacuole surrounded by a parasitophorous vacuolar membrane (PVM). Pivotal to the restriction of T. gondii dissemination upon infection in murine cells is the recruitment of immunity regulated GTPases (IRGs) and guanylate binding proteins (GBPs) to the PVM that leads to pathogen elimination. The virulent T. gondii type I RH strain secretes a handful of effectors including the dense granule protein GRA7, the serine-threonine kinases ROP17 and ROP18, and a pseudo-kinase ROP5, that synergistically inhibit the recruitment of IRGs to the PVM. Here, we characterise GRA60, a novel dense granule effector, which localises to the vacuolar space and PVM and contributes to virulence of RH in mice, suggesting a role in the subversion of host cell defence mechanisms. Members of the host cell IRG defence system Irgb10 and Irga6 are recruited to the PVM of RH parasites lacking GRA60 as observed previously for the avirulent RHΔrop5 mutant, with RH preventing such recruitment. Deletion of GRA60 in RHΔrop5 leads to a recruitment of IRGs comparable to the single knockouts. GRA60 therefore represents a novel parasite effector conferring resistance to IRGs in type I parasites, and found associated to ROP18, a member of the virulence complex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call