Abstract
Radke, J. R., Guerini, M. N., and White, M. W. 2000. Toxoplasma gondii: Characterization of temperature-sensitive tachyzoite cell cycle mutants. Experimental Parasitology96, 168–177. We mutagenized RHδhxgprt strain tachyzoites of Toxoplasma gondii using N-nitroso-N-ethylurea and analyzed 40 clonal isolates (of 3680 ENU mutants) that were unable to grow in cell culture at 40°C. These isolates grew normally at 34°C, but showed variable growth at temperatures between 34 and 39°C. The inability to grow at 40°C was also correlated with a loss of virulence in mice for those mutants examined. We further characterized the temperature-sensitive (ts) isolates using flow cytometry and propidium iodide staining and identified three types of cell cycle-related mutations. Regardless of temperature, in the isolates ts1C12, ts7B4, and ts7B10, the distribution of parasites with a haploid DNA content was substantially higher (≅ 85%) than that observed for RHδhxgprt (≅ 60%). Four other isolates, ts4F6, ts6C11, ts8G10, and ts11F5, contained G1-related mutations, and in each case, the DNA distribution among parasites at the permissive temperature was similar to that of the parental strain, but at 40°C only a single population containing a 1N nuclear DNA complement was evident. Furthermore, there was no evidence of nuclear division or cytokinesis at 40°C, and these parasites demonstrated a distended cytoplasm typical of G1 arrest in other cell types. Finally, parasites of the ts11C9 mutant arrested in two near-equal populations with either 1N or 2N complements of nuclear DNA. All arrested ts11C9 parasites contained a single nucleus, and a major subfraction of the 2N population contained abnormal and incompletely formed daughters—indicating that the initiation of daughter formation can occur in the absence of nuclear division.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.