Abstract

The percentage of bacterial infections refractory to standard antibiotic treatments is steadily increasing. Among the most problematic hospital and community-acquired pathogens are methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (PA). One novel strategy proposed for treating infections of multidrug-resistant bacteria is the activation of latent toxins of toxin-antitoxin (TA) protein complexes residing within bacteria; however, the prevalence and identity of TA systems in clinical isolates of MRSA and PA has not been defined. We isolated DNA from 78 MRSA and 42 PA clinical isolates and used PCR to probe for the presence of various TA loci. Our results showed that the genes for homologs of the mazEF TA system in MRSA and the relBE and higBA TA systems in PA were present in 100% of the respective strains. Additionally, reverse transcriptase PCR analysis revealed that these transcripts are produced in the clinical isolates. These results indicate that TA genes are prevalent and transcribed within MRSA and PA and suggest that activation of the toxin proteins could be an effective antibacterial strategy for these pathogens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.