Abstract

Metal and metal oxide nanoparticles have been widely used in catalytic, electronic and biomedical fields. It is necessary to investigate their toxicity and potential hazards to human and aquatic ecosystems. Zebrafish (Danio rerio), as a promising animal model, has been increasingly utilized to assess the toxicity of nanoparticles. Zebrafish has numerous characteristics for toxicity evaluation, such as short life cycle and high fecundity. This review describes the advantages of using zebrafish in the toxicity assessment of metal and metal oxide nanoparticles. Then we focus on the toxic effects, particularly the acute toxicity and the chronic ones, induced by nanoparticles in zebrafish. Target organ toxicities are also mentioned, including immunotoxicity, developmental toxicity, neurotoxicity, reproductive toxicity, cardiovascular toxicity and hepatotoxicity. The toxic effects of selected metal nanoparticles, including Au, Ag, Cu, and metal oxide nanoparticles such as TiO2 , Al2 O3 , CuO, NiO and ZnO, as well as the underlying mechanisms of nanoparticles causing these effects, are also highlighted and described in detail. Furthermore, we introduce the general factors that affect nanoparticle-induced toxicity in zebrafish. The drawbacks and advantages of using the zebrafish model in nanotoxicity studies are also argued. Finally, we suggest that the application of zebrafish to assess chronic toxicity of metal and metal oxide nanoparticles and the joint toxicity of metal and metal oxide nanoparticles and other pollutants could be hot topics in nanotoxicology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call