Abstract
Present study screened the toxicological assessment of airborne particulate matter (PM), mechanistic investigation, relationship between the physicochemical characteristics and its associated toxic response. The average concentration of both PM10 and PM2.5 exceeded the Indian National Ambient Air Quality Standards. In present study, PM bound metals; Fe, Cu, Cr, Ni, Mn, Pb, Cd, Zn, Sr and Co have been taken into account with total metal concentration of 0.83 and 0.44 μg m−3 of PM10 and PM2.5 mass concentrations, respectively. The contribution of redox active metals (Fe, Cu, Cr, Ni and Mn) in PM was more as compared to non-redox metals (Pb, Cd and Co) indicating significant risk to the exposed population as these metals possess the ability to produce reactive oxygen species (ROS) which are responsible for various diseases. The cytotoxicity profiles of PM samples determined by MTT assay on two different cell lines (A549 and PBMC) exhibited dose-dependent effects after 24 h exposure, but the consequences differ with respect to particle size and sampling periods. A significant decrease in cell viability with varying PM concentrations (20, 40, 60, 80 and 100 μg ml−1) with respect to control was found in both cell lines. Incubation of RBC suspension with PM samples caused pronounced disruption of RBC and thus exhibited substantial hemolytic behavior. PM samples showed a range of potency to produce reactive oxygen species (ROS). Almost all PM samples increased the level of pro-inflammatory mediator (Nitric oxide) when compared to corresponding unexposed controls suggesting the important role of reactive nitrogen species in induction of cellular toxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.