Abstract

The present paper describes a strategy for toxicological evaluation of complex mixtures based on chemical “fingerprinting” followed by pattern recognition (multivariate data analysis). The purpose is to correlate chemical fingerprints to measured toxicological endpoints, identify all major contributors to toxicity, and predict toxicity of additional mixtures. The strategy is illustrated with organic extracts of exhaust particles which are characterized by full scan gas chromatography-mass spectrometry (GC–MS). The complex GC–MS data are resolved into peaks and spectra for individual compounds using an automated curve resolution procedure. Projections to latent structures (PLS) is used for the regression modeling to correlate the GC–MS data to the measured responses; mutagenicity in the Ames Salmonella assay. The regression model identifies those peaks that co-vary with the observed mutagenicity. These peaks may be identified chemically from their spectra. Furthermore, the regression model can be used to predict mutagenicity from GC–MS chromatograms of additional samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.