Abstract
Quantum dot nanoparticles (QDs) are proposed as novel materials for photovoltaic technologies, light emitting devices, and biomedical applications. In this study we investigated the effect of CdSe/ZnS QDs on the growth rate of four microalgae: the diatom Phaeodactylum tricornutum, the cryptophyte Rhinomonas reticulata, the prymnesiophyte Isochrysis galbana and the green alga Dunaliella tertiolecta. In addition we analyzed the effect of QDs on the copepod Acartia tonsa. A classical acute test (48-h) with embryos was carried out to evaluate naupliar survival. Moreover, a 4-day chronic test with adult copepods was conducted to evaluate their fecundity (embryos f−1day−1) and egg hatching success. QDs in the range from 1 to 4nM gradually inhibited the growth rate of P. tricornutum, I. galbana, R. reticulata and D. tertiolecta with an EC50 of 1.5, 2.4, 2.5 and 4.2nM, respectively. Acute tests with A. tonsa (QD concentration tested from 0.15 to 1.5nM) showed an increased naupliar mortality in response to QD treatment, exhibiting an EC50 of 0.7nM. Chronic test showed no negative effect on egg production, except on the last two days at the highest QD concentration (2.5nM). No significant reduction of the percentage of egg hatching success was recorded during the exposure. Toxicity assessment of QDs was also investigated at the molecular level, studying heat shock protein 70 gene expression (hsp 70). Our results indicate that hsp70 was upregulated in adults exposed 3 days to 0.5nM QDs. Overall, these results suggest that species unable to swim along the water column, like P. tricornutum and early hatched copepods, could be more exposed to toxic effects of QDs which tend to aggregate and settle in seawater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.