Abstract
Carbon nanotubes (CNTs) have been widely used in developing polymer hybrid coatings for anticorrosive application. In the present study, poly [(3,5-dimethyl-lH-pyrazole-1-yl) methyl methacrylate-co-glycidyl methacrylate] (PyM) was prepared by solution polymerization. Single-wall carbon nanotubes (SWCNT) were incorporated in the PyM by solution blending technique at different proportions. The PyM and its SWCNT (PyM-SWCNT) nanocomposites were characterized by FT-IR spectroscopy, X-Ray Diffraction, FE-SEM and HR-TEM. Different concentrations of PyM or PyM-SWCNT prepared in the present study were assessed separately for their toxicity by in vivo and in vitro assays using zebrafish embryos and gill cell line of zebrafish (DrG), respectively. The nanocomposites at the concentration of 400μgml-1 of PyM in 1.0% of SWCNT was found to be non-toxic and recommended for anticorrosive application whereas the nanocomposites with above 1% of SWCNT was found to be toxic. The nanocomposites with 1.5% of SWCNT delayed the hatching rate of eggs, decreased survival rate and heart beat in zebrafish embryos, and induced the morphological changes in DrG cells. Gene expression studies revealed that PyM-SWCNT with high concentration of SWCNT induced oxidative stress by activating ROS generations in zebrafish embryos and DrG cells. The immersion study of uncoated and coated with recommended concentration of PyM-SWCNT on mild steel (MS) in sea water was studied using FE-SEM and EDS, and the results showed effective corrosion protection without leaching behaviour. The nanocomposites with novel polymer in the present study may be used in the industry for anticorrosive purpose.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.