Abstract

Future human exposure to inorganic mercury will probably lead to a few individuals occupationally exposed to high levels and much larger populations exposed to low or very low levels from dental fillings or from food items containing inorganic mercury; human exposure to methylmercury will be relatively low and depending on intake of marine food. Ideally, risk assessment is based on detailed knowledge of relations between external and internal dose, organ levels, and their relation to toxic symptoms. However, human data on these toxicokinetic parameters originate mainly from individuals or smaller populations accidentally exposed for shorter periods to relatively high mercury levels, but with unknown total body burden. Thus, assessment of risk associated with exposure to low levels of mercury will largely depend on data from animal experiments. Previous investigations of the toxicokinetics of mercuric compounds almost exclusively employed parenteral administration of relatively high doses of soluble mercuric salts. However, human exposure is primarily pulmonary or oral and at low doses. The present study validates an experimental model for investigating the toxicokinetics of orally administered mercuric chloride and methylmercuric chloride in mice. Major findings using this model are discussed in relation to previous knowledge. The toxicokinetics of inorganic mercury in mice depend on dose size, administration route, and sex, whereas the mouse strain used is less important. The "true absorption" of a single oral dose of HgCl2 was calculated to be about 20% at two different dose levels. Earlier studies that did not take into account the possible excretion of absorbed mercury and intestinal reabsorption during the experimental period report 7-10% intestinal uptake. The higher excretion rates observed after oral than after intraperitoneal administration of HgCl2 are most likely due to differences in disposition of systemically delivered and retained mercury. After methylmercury administration, mercury excretion followed first-order kinetics for 2 wk, independently of administration route, strain, or sex. However, during longer experimental periods, the increasing relative carcass retention (slower rate of excretion) caused the elimination to deviate from first-order kinetics. Extensive differences in the toxicokinetics of methylmercury with respect to excretion rates, organ deposition, and blood levels were observed between males and females.(ABSTRACT TRUNCATED AT 400 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.