Abstract

Several recent studies have focused on the toxicodynamic implications of amphibian exposure to the commonly used herbicide atrazine (2-chloro-4-ethylamine-6-isopropylamino-s-triazine). These studies are an important part of the risk assessment process; however, the underlying mechanisms of atrazine toxicodynamics are lacking. In an attempt to more fully describe atrazine exposure, the toxicokinetics of atrazine were studied in stage-66 Xenopus laevis larvae. The absorption, distribution, and excretion capacity of these larvae were found to be comparable to those observed in fish. The calculated bioconcentration factor (BCF) was 1.5-1.6 mLwater/glarvae, and by use of whole-body autoradiography, the radiolabel was found to be concentrated in the gall bladder and gastrointestinal tract. Elimination of atrazine was rapid with a half-life of 48 min. The high metabolic capacity of stage-66 X. laevis larvae was demonstrated where, following 8 h of exposure to 14C-atrazine, the percentages of atrazine and its metabolites deethyldeisopropylatrazine (DACT), deisopropylatrazine (DIA), and deethylatrazine (DEA) in larvae, determined by thin-layer chromatography, were 49.8% +/- 3.3%, 9.8% +/- 2.1%, 16.1% +/- 2.5%, and 15.6% +/- 2.0%, respectively. An unknown metabolite(s) was also produced and accounted for the remaining proportion of the total body radioactive residues. This metabolite(s) is hypothesized to be a conjugate of either atrazine or one of its metabolites. These metabolites, namely, DIA, were responsible for the long elimination half-life (72 h) of the total body radioactive residues. These toxicokinetics data would provide better insights in the interpretation of toxicodynamic data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.