Abstract

The aim of present study was to reveal the toxicokinetic properties and absolute oral bioavailability of deoxynivalenol (DON) in turkey poults. Six turkey poults were administered thisFusarium mycotoxinper os and intravenously in a two-way cross-over design. Based on non-compartmental analysis, DON was absorbed rapidly (Tmax= 0.57 h) but incomplete, as the oral bioavailability was only 20.9%. DON was rapidly eliminated as well, both after oral (T1/2elimination PO=0.86 h) as well as intravenous (IV) (T1/2elimination IV = 0.62 h) administration. Furthermore, semi-quantitative analysis using high-resolution mass spectrometry revealed that DON-3α-sulphate is the major metabolite of DON in turkeys after IV as well as oral administration, with DON-3α-sulphate/DON ratios between 1.3-12.6 and 32.4-140.8 after IV and oral administration, respectively. Glucuronidation of DON to DON-3α-glucuronide is a minor pathway in turkey poults, with DON-3α-glucuronide/DON ratios between 0.009-0.065 and 0.020-0.481 after IV and oral administration, respectively. Only trace amounts of other metabolites were found including 10-DON-sulphonate, de-epoxydeoxynivalenol and 10-de-epoxydeoxynivalenol-sulphonate. In addition, a similar two-way cross-over study was performed in three broiler chickens, in order to compare the biotransformation of DON in both poultry species. High-resolution mass spectrometry revealed that DON-3α-sulphate was the major metabolite of DON in broiler chickens as well, with DON-3α-sulphate/DON ratios between 243-453 and 1,365-29,624 after IV and oral administration, respectively. These ratios indicate that broiler chickens metabolise DON even more extensively to the sulphate conjugate compared to turkey poults. Only trace amounts of other metabolites were detected in broiler chickens. In conclusion, it can be stated that the toxicokinetic behaviour of DON in broiler chickens and turkey poults is comparable (low absolute oral bioavailability, rapid absorption and elimination, extensive biotransformation to DON-3α-sulphate), however, relative differences in DON-3α-sulphate/DON ratios exist between both species which might explain the hypothesised difference in sensitivity of both poultry species to DON.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.