Abstract

Non-dioxin-like polychlorinated biphenyls (ndl-PCBs) are persistent environmental pollutants that accumulate in the tissues of exposed animals and humans. Contaminated feed can lead to ndl-PCB contaminated food of animal origin; such foods are the main route of human exposure. Therefore, predicting ndl-PCB transfer from feed into animal products is important for human health risk assessment. Here, we developed a physiologically based toxicokinetic model describing the transfer of PCBs-28, 52, 101, 138, 153 and 180 from contaminated feed into the liver and fat of fattening pigs. The model is based on a feeding study with fattening pigs (PIC hybrids) that were temporarily fed contaminated feed containing known concentrations of ndl-PCBs. Animals were slaughtered at different ages, and ndl-PCB concentrations in muscle fat and liver were determined. The model accounts for animal growth and excretion via the liver. Based on their elimination speed and half-lives, they can be categorized into fast (PCB-28), intermediate (PCBs 52 and 101) and slow (PCBs 138, 153 and 180). Using a simulation with realistic growth and feeding patterns, the following transfer rates were found: 10 % (for fast), 35–39 % (intermediate) and 71–77 % (slow eliminated congeners). Using the models, the highest level of 3.8 μg/kg dry matter (DM) was calculated for any sum of ndl-PCBs in pig feed to ensure that the current maximum levels in pork meat and liver (40 ng/g fat) are not be exceeded. The model is included in the Supplementary Material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.