Abstract
Applications for silver nanomaterials in consumer products are rapidly expanding, creating an urgent need for toxicological examination of the exposure potential and ecological effects of silver nanoparticles (AgNPs). The integration of genomic techniques into environmental toxicology has presented new avenues to develop exposure biomarkers and investigate the mode of toxicity of novel chemicals. In the present study we used a 15k oligonucleotide microarray for Daphnia magna, a freshwater crustacean and common indicator species for toxicity, to differentiate between particle specific and ionic silver toxicity and to develop exposure biomarkers for citrate-coated and PVP-coated AgNPs. Gene expression profiles revealed that AgNO(3) and AgNPs have distinct expression profiles suggesting different modes of toxicity. Major biological processes disrupted by the AgNPs include protein metabolism and signal transduction. In contrast, AgNO(3) caused a downregulation of developmental processes, particularly in sensory development. Metal responsive and DNA damage repair genes were induced by the PVP AgNPs, but not the other treatments. In addition, two specific biomarkers were developed for the environmental detection of PVP AgNPs; although further verification under different environmental conditions is needed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.