Abstract

Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) are analogs of PBDEs with hundreds of possible structures and are frequently detected in the environment. However, the in vivo evidence on the toxicity of OH-PBDEs is still very limited. Here, the developmental toxicity of 6-OH-BDE47, a predominant congener of OH-PBDEs detected in the environment, in chicken embryos was assessed using a toxicogenomic approach. Fertilized chicken eggs were dosed via in ovo administration of 0.006 to 0.474 nmol 6-OH-BDE47/g egg followed by 18 days of incubation. Significant embryo lethality (LD50 = 1.940 nmol/g egg) and increased hepatic somatic index (HSI) were caused by 6-OH-BDE47 exposure. The functional enrichment of differentially expressed genes (DEGs) was associated with oxidative phosphorylation, generation of precursor metabolites and energy, and electron transport chains, which suggest that 6-OH-BDE47 exposure may disrupt the embryo development by altering the function of energy production in mitochondria. Moreover, aryl hydrocarbon receptor (AhR)-mediated responses including up-regulation of CYP1A4 were observed in the livers of embryos exposed to 6-OH-BDE47. Overall, this study confirmed the embryo lethality by 6-OH-BDE47 and further improved the mechanistic understanding of OH-PBDEs-caused toxicity. Ecological risk assessment via application of both no-observed-effect level (NOEL) and the sensitive NOTEL (transcriptional NOEL) suggested that OH-PBDEs might cause ecological risk to wild birds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call