Abstract

The efficient management of the continuously increasing number of chemical substances used in today's society is assuming greater importance than ever before. Toxicity testing plays a key role in the regulatory decisions of agencies and governments that aim to protect the public and the environment from the potentially harmful or adverse effects of these multitudinous chemicals. Therefore, there is a critical need for reliable toxicity-testing methods to identify, assess and interpret the hazardous properties of any substance. Traditionally, toxicity-testing approaches have been based on studies in experimental animals. However, in the last 20 years, there has been increasing concern regarding the sustainability of these methodologies. This has created a real need for the development of new approach methodologies (NAMs) that satisfy the regulatory requirements and are acceptable and affordable to society. Numerous initiatives have been launched worldwide in attempts to address this critical need. However, although the science to support this is now available, the legislation and the pace of NAMs acceptance is lagging behind. This review will consider some of the various initiatives in Europe to identify NAMs to replace or refine the current toxicity-testing methods for pharmaceuticals. This paper also presents a novel systematic approach to support the desired toxicity-testing methodologies that the 21st century deserves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.