Abstract

DNAzymes are single-stranded catalytic DNA molecules that bind and cleave specific sequences in a target mRNA molecule. Their potential as novel therapeutic agents has been demonstrated in a variety of disease models. However, no studies have yet addressed their toxicology and safety pharmacology profiles in detail. Here we describe a detailed toxicological analysis of inhaled hgd40, a GATA-3-specific DNAzyme designed for the treatment of allergic bronchial asthma. Subacute toxicity, immunotoxicity, and respiratory, cardiovascular, and CNS safety pharmacology were analyzed in rodents and non-rodents, and genotoxicity was assessed in human peripheral blood. Overall, hgd40 was very well tolerated when delivered by aerosol inhalation or slow intravenous infusion. Only marginal reversible histopathological changes were observed in the lungs of rats receiving the highest dose of inhaled hgd40. The changes consisted of slight mononuclear cell infiltration and alveolar histiocytosis, and moderate hyperplasia of bronchus-associated lymphoid tissue. No local or systemic adverse effects were observed in dogs. No compound-related respiratory, cardiovascular, or CNS adverse events were observed. The only relevant immunological findings were very slight dose-dependent changes in interleukin-10 and interferon-γ levels in bronchoalveolar lavage fluid. Taken together, these results support direct delivery of a DNAzyme via inhalation for the treatment of respiratory disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.