Abstract

Rapid progress in the development of highly efficient nanoparticle-based construction technologies has not always been accompanied by a corresponding understanding of their effects on human health and ecosystems. In this study, we compare the toxicological effects of pristine TiO2, ZnO, SiO2, and coated SiO2 nanoparticles, and evaluate their suitability as additives to consolidants of weathered construction materials. First, water soluble tetrazolium 1 (WST-1) and lactate dehydrogenase (LDH) assays were used to determine the viability of human alveolar A549 cells at various nanoparticle concentrations (0–250 μg mL−1). While the pristine TiO2 and coated SiO2 nanoparticles did not exhibit any cytotoxic effects up to the highest tested concentration, the pristine SiO2 and ZnO nanoparticles significantly reduced cell viability. Second, as all developed nanoparticle-modified consolidants increased the mechanical strength of weathered sandstone, the decisive criterion for the selection of the most suitable nanoparticle additive was as low toxicity as possible. We believe that this approach would be of high importance in the industry, to identify materials representing top functional properties and low toxicity, at an early stage of the product development.

Highlights

  • Nanoparticles are widely used because they can improve both the quantitative and qualitative properties of technological materials [1]

  • While amorphous SiO2 nanoparticles, both uncoated and coated, exhibit a characteristic spherical shape, highly crystalline TiO2 and ZnO nanoparticles differ in their morphology, being prismatic and platelet-like, respectively

  • Using two independent water soluble tetrazolium 1 (WST-1) and lactate dehydrogenase (LDH) assays, we have shown that the toxicity of various nanoparticles differed considerably

Read more

Summary

Introduction

Nanoparticles are widely used because they can improve both the quantitative and qualitative properties of technological materials [1]. They can enhance the mechanical properties of the materials used to consolidate weathered building materials [2]. Their production, handling and use can pose health and environmental risks that potentially limit their benefits. From the application point of view, SiO2, ZnO, and TiO2 form a triad of the most commonly used oxide nanoparticles. While their surface properties are comparable, their structural properties differ substantially, their solubility and conductivity. ZnO and TiO2 are semiconductors with a similar band-gap [4,5,6,7], whereas SiO2 is an insulant

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.