Abstract
The combined toxicities of binary mixtures of veterinary pharmaceutical active compounds were examined using the bioluminescent bacterium Aliivibrio fischeri as a test organism (Microtox® test). Mixtures were prepared at an equitoxic ratio that corresponded to the inhibitory concentration, 10% (IC10) of individual pharmaceutical active compounds. In addition, the toxicity was determined of a multicomponent mixture that contained all of the investigated pharmaceutical active compounds mixed at a ratio corresponding to their individual predicted no-effect concentration (PNEC) values. The experimental results were successively compared with those obtained by applying the 2 most widely used models for predicting mixture toxicity, the concentration addition (CA) and independent action (IA) models. Although the toxicity of the multicomponent mixture tested was well predicted by the CA and IA models, deviations from the model predictions were found for almost all of the binary mixtures. The deviations from the CA and IA models were greater at lower concentrations, particularly when diclofenac sodium and amoxicillin were present in the mixture. Based on these results, another hypothesis was tested, that of toxicological interactions occurring in binary mixtures (in the direction of synergistic or antagonistic effects), by applying the combination index method, which allowed for computerized quantification of synergism, the additive effect and antagonism. The application of this method confirmed, for at least half of the binary combinations, the clear presence of synergistic deviations at the lowest tested concentrations, with a tendency toward antagonism at the higher ones. In 1 case, a relevant antagonistic interaction was observed. Environ Toxicol Chem 2017;36:815-822. © 2016 SETAC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.