Abstract

Purpose Accumulation of Gamma aluminium oxide nanoparticles γ-Al2O3 NPs significant impact on aquatic ecosystems. However, the toxicity of γ-Al2O3 NPs in aquatic organisms has been limited investigated. This study investigated histopathological changes and antioxidant responses induced by different concentrations of γ-Al2O3 NPs in Mytilus galloprovincialis. Material and methods In this study, mussels were exposed to different concentrations of 5 nm γ-Al2O3 NPs (0, 5, 20 and 40 mg/L) for 96 h under controlled laboratory conditions. Gill and digestive gland from mussels were assessed to histopathological (light microscopy, histopathological condition indices, digestive gland tubule types), SOD, CAT, GPx activities. Results Histopathological indices calculated higher, and significantly different in all exposure groups compared to the control group in gill and digestive gland (p < 0.05). Atrophic phase tubules proportion very high in 20 and 40 mg/L γ-Al2O3 NPs exposure groups. No significant changes in CAT activities in the gill and digestive gland (p > 0.05). Superoxide dismutase (SOD) activities significantly different (p ≤ 0.05) in the digestive gland from 20 mg/L γ-Al2O3 NPs exposures, and GPx activities significantly different (p < 0.05) in gill from 40 mg/L γ-Al2O3 NPs exposures. Conclusion These results indicate that contamination of γ-Al2O3 NPs negatively affects the aquatic organism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.