Abstract

Gabapentin-lactam (GBP-L) is a transformation product (TP) of gabapentin (GBP), a widely used anti-epileptic pharmaceutical. Due to its high persistence, GBP-L has been frequently detected in the surface water. However, the effects of GBP-L on aquatic organisms have not been thoroughly investigated. In the present study, zebrafish (Danio rerio) embryos as a model organism were used to study the impacts of GBP-L in terms of embryos LC50, spontaneous movement at 24 hpf (hours post fertilization), heartbeat rates at 48 hpf, and body length at 72 hpf, with the concentrations of GBP-L down to 0.01 μg/L, covering its environmental concentrations. Various biomarkers from nervous, antioxidant and immune systems of zebrafish larvae were analyzed, including acetylcholinesterase, acetylcholine, dopamine, gamma-aminobutyric acid, superoxide dismutase, catalase, glutathione S-transferase, C reactive protein, and lysozyme, to assess its toxicity on these systems. RT-qPCR was then used to further verify the results and explain the toxicological mechanism at the gene level. The results demonstrated that GBP-L is much more toxic than its parent compound, and could lead to adverse impacts on the aquatic organisms even at every low concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.