Abstract

Acute catastrophic events can cause significant damage to marine environments in a short time period and may have devastating long-term impacts. In April 2010 the BP-operated Deepwater Horizon (DWH) offshore oil rig exploded, releasing an estimated 760 million liters of crude oil into the Gulf of Mexico. This study examines the potential effects of oil spill exposure on coral larvae of the Florida Keys. Larvae of the brooding coral, Porites astreoides, and the broadcast spawning coral, Montastraea faveolata, were exposed to multiple concentrations of BP Horizon source oil (crude, weathered and WAF), oil in combination with the dispersant Corexit® 9500 (CEWAF), and dispersant alone, and analyzed for behavior, settlement, and survival. Settlement and survival of P. astreoides and M. faveolata larvae decreased with increasing concentrations of WAF, CEWAF and Corexit® 9500, however the degree of the response varied by species and solution. P. astreoides larvae experienced decreased settlement and survival following exposure to 0.62 ppm source oil, while M. faveolata larvae were negatively impacted by 0.65, 1.34 and 1.5 ppm, suggesting that P. astreoides larvae may be more tolerant to WAF exposure than M. faveolata larvae. Exposure to medium and high concentrations of CEWAF (4.28/18.56 and 30.99/35.76 ppm) and dispersant Corexit® 9500 (50 and 100 ppm), significantly decreased larval settlement and survival for both species. Furthermore, exposure to Corexit® 9500 resulted in settlement failure and complete larval mortality after exposure to 50 and 100 ppm for M. faveolata and 100 ppm for P. astreoides. These results indicate that exposure of coral larvae to oil spill related contaminants, particularly the dispersant Corexit® 9500, has the potential to negatively impact coral settlement and survival, thereby affecting the resilience and recovery of coral reefs following exposure to oil and dispersants.

Highlights

  • The Gulf of Mexico serves as a major source of crude oil for much of the Western hemisphere

  • Mitigation of the spill with dispersant chemicals was effective in reducing the magnitude of the offshore oil slick, it is plausible that a significant portion of petroleum toxicants have been absorbed into the water column as a result

  • Much concern has arisen regarding the potential for oil pollution to reach coral reefs, those in the Florida Keys that may be impacted by oil originating in the Gulf of Mexico and arriving via offshore currents

Read more

Summary

Introduction

The Gulf of Mexico serves as a major source of crude oil for much of the Western hemisphere. It is estimated that over 1.5 million barrels of oil are extracted each day from offshore oil platforms in the Gulf [1], many of which are located within close proximity to the coastline. This intensive extraction and traffic of crude oil has, as seen with the Exxon Valdez and Deepwater Horizon (DWH) spills, the potential to result in large-scale environmental catastrophes with significant environmental impacts. While dispersants do not reduce the amount of oil entering the environment, they affect the fate, transport, and potential effects of an oil spill by altering the oil’s physical properties [2]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.