Abstract

Black phosphorus nanosheets (BPNSs) has extensive application prospect in the fields of optoelectronics and biomedicine, due to its unique physicochemical properties. Therefore, a systematic toxic study is necessary to assess its environmental safety. Herein, BPNSs was prepared by liquid exfoliation procedure, the primary producer Chlorella vulgaris (C. vulgaris) was used as a test subject. After the exposure for 120 h at 15, 45 and 75 mg/L BPNSs, the cell viabilities were 45.05%, 18.86% and 4.60% for each treatment group, respectively. The extent of lipid peroxidation and peroxidative damage in C. vulgaris was confirmed by measuring reactive oxygen species (ROS) levels, superoxide dismutase (SOD) and catalase (CAT) activities, followed by determination of malondialdehyde (MDA) content. Morphological analysis results (i.e., SEM and TEM) showed that BPNSs adhered to the cell surface and enter the cell to severely damage cell structure. Furthermore, BPNSs were shown to accelerate apoptosis in C. vulgaris by flow cytometry analysis. Finally, GC-MS was used to explore the metabolic regulatory mechanism of C. vulgaris in response to BPNSs stress. The results of this study can provide theoretical support for subsequent studies on the potential enrichment risk of BPNSs in the water environmental food chain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.