Abstract

Chromated copper arsenate (CCA) mixtures were used in the past for wood preservation, leading to large scale soil contamination. This study aimed at contributing to the risk assessment of CCA-contaminated soils by assessing the toxicity of binary mixtures of copper, chromium and arsenic to the earthworm Eisenia andrei in OECD artificial soil. Mixture effects were related to reference models of Concentration Addition (CA) and Independent Action (IA) using the MIXTOX model, with effects being related to total and available (H2O and 0.01 M CaCl2 extractable) concentrations in the soil. Since only in mixtures with arsenic dose-related mortality occurred (LC50 92.5 mg/kg dry soil), it was not possible to analyze the mixture effects on earthworm survival with the MIXTOX model. EC50s for effects of Cu, Cr and As on earthworm reproduction, based on total soil concentrations, were 154, 449 and 9.1 mg/kg dry soil, respectively. Effects of mixtures were mainly antagonistic when related to the CA model but additive related to the IA model. This was the case when mixture effects were based on total and H2O-extractable concentrations; when based on CaCl2-extractable concentrations effects mainly were additive related to the CA model except for the Cr–As mixture which acted antagonistically. These results suggest that the CCA components do interact leading to a reduced toxicity when present in a mixture.

Highlights

  • Following over 200 years of industrialization, soil contamination is a widespread problem in many countries

  • The binary mixture effects were overall antagonistic when related to the concentration addition (CA) model and additive when related to the independent action (IA) model

  • The results of this study suggest that Cu, Cr and As have different modes of action as they generally showed antagonism when their mixture effect was analyzed using the CA model and additivity according to the IA model

Read more

Summary

Objectives

This study aimed at contributing to the risk assessment of CCA-contaminated soils by assessing the toxicity of binary mixtures of copper, chromium and arsenic to the earthworm Eisenia andrei in OECD artificial soil

Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call