Abstract

AbstractPerovskite solar cells (PSCs) have developed rapidly in recent years due to their excellent photoelectric properties. Among them, lead‐based perovskite photovoltaics have shown great potential for both outdoor and indoor applications, whose power conversion efficiency and stability are much higher than that of lead‐free PSCs. However, based on results of in vivo animal studies, Kyoto Encyclopedia of Genes and Genomes annotations and pathway analysis of microbiota and metabolites influenced by lead, it has been proved that lead exposure from PSCs probably causes systematic toxicity to human body. For the purpose of reducing lead leakage, some methods mainly based on polymer resin protective layers and self‐healing encapsulation have been introduced, which can increase lead capture rate up to 95% under harsh conditions. Eventually, the devices will still face damage and obsolescence, accompanied by lead leakage into the environment. Comprehensive recycling strategies are necessary to solve this problem from the root and also shorten the energy payback time for further transformation and upgrading of green energy. The vertical and in‐depth collaborative strategy for lead leakage prevention and comprehensive recycling would provide an environmentally‐friendly guarantee for the final large‐scale market of perovskite photovoltaics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.