Abstract

The toxicity in the brain of several parathion, fenthion, and fensulfothion insecticides and their toxic metabolites was determined by a technique of directly injecting the compounds into the region of the third ventricle of conscious mice, an area rich in cholinesterase activity. The results were compared on a body weight basis to the toxicity of these compounds when given by ip and oral routes. The results show that there is a direct relationship between the relative inhibition of cholinesterase activity in the brain by the organophosphates (e.g., methyl paraoxon, Sumioxon, and some members of the fenthion series) and the toxicity of these compounds in the brain. Methyl paraoxon and Sumioxon were found to be very toxic in the brain, Sumioxon being three to four times less toxic than methyl paraoxon. This is of the same order of effect of these compounds in inhibiting cholinesterases. It is concluded that any selective effects of Sumithion compared with methyl parathion must be due to the greater rate of metabolism of Sumithion to less toxic metabolites as well as to the lower toxicity of the oxon metabolite and not due to the relative rates of penetration of the toxic oxygen metabolites as previously suggested [J. Miyamoto, Agr. Biol. Chem. 28, 422 (1964)]. A gas-liquid chromatographic method was employed to assess the distribution in the brain following intracerebral injection of the parathion-type compounds. The results suggest that there may be intracerebral metabolism of thionophosphates in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call