Abstract
Nanotechnology, through nanomedicine, allowed drugs to be manipulated into nanoscale sizes for delivery to the different parts of the body, at the same time, retaining the valuable pharmacological properties of the drugs. However, efficient drug delivery and excellent release potential of these delivery systems may be hindered by possible untoward side effects. In this study, the sub-acute toxicity of oral zinc aluminium nanocomposite with and without levodopa was assessed using the Organization for Economic Co-operation and Development guidelines. No sign or symptom of toxicity was observed in orally treated rats with the nanocomposite at 5 and 500 mg/kg concentrations. Body weight gain, feeding, water intake, general survival and organosomatic index were not significantly different between control and treatment groups. Aspartate aminotransferase (AST) in 500 mg/kg levodopa nanocomposite (169 ± 30 U/L), 5 mg/kg levodopa nanocomposite (172 ± 49 U/L), and 500 mg/kg layered double hydroxides (LDH) nanocomposite (175 ± 25 U/L) were notably elevated compared to controls (143 ± 05 U/L); but the difference were not significant (p > 0.05). However, the differences in aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio of 500 mg/kg levodopa nanocomposite (0.32 ± 0.12) and 500 mg/kg LDH nanocomposite (0.34 ± 0.12) were statistically significant (p < 0.05) compared to the control (0.51 ± 0.07). Histology of the liver, spleen and brain was found to be of similar morphology in both control and experimental groups. The kidneys of 500-mg/kg-treated rats with levodopa nanocomposite and LDH nanocomposite were found to have slight inflammatory changes, notably leukocyte infiltration around the glomeruli. The ultra-structure of the neurons from the substantia nigra of nanocomposite-exposed group was similar to those receiving only normal saline. The observed result has suggested possible liver and renal toxicity in orally administered levodopa intercalated nanocomposite; it is also dose-dependent that needs further assessment.
Highlights
Nanodelivery system is a part of nanotechnology that allows for drugs to be manipulated into nanoscale, allowing for the delivery of drugs to the different parts of the body at the same time retaining the valuable pharmacological properties [1]
28 days of repeated doses of Zinc aluminium levodopa (ZAL) and Zinc aluminium nanoparticle (ZA) at 5 and 500 mg/kg, via oral route did not show any effect on these organs' weight in relation to the whole body weight. This implies that orally administered ZAL and ZA at 5 or 500 mg/kg respectively do not induce any obvious clinical toxicity or do they resulted in any animal demise
aspartate aminotransferase (AST) in zinc-aluminium levodopa high dose (ZALH), zinc-aluminium nanocomposite high dose (ZAH) and ZAL groups was insignificantly elevated compared to Vehicle control (VC) (p > 0.05)
Summary
Nanodelivery system is a part of nanotechnology that allows for drugs to be manipulated into nanoscale, allowing for the delivery of drugs to the different parts of the body at the same time retaining the valuable pharmacological properties [1]. Layered double hydroxides (LDH) are mainly synthesized via co-precipitation or ion exchange methods [1,2] They are attracting a great deal of interest as effective and efficient nanodelivery system [1,2]. As a drug delivery system, LDH has a unique controllable ion exchange capacity, pH-dependent solubility, and controlled release properties. These are due to the positively charged metal hydroxide sheets and charge-compensating interlayer anions, hydrated with water molecules of LDH nanocomposite [1]. LDH in drug delivery is said to be less toxic than other inorganic nanodelivery systems [2]; it is generally biocompatible, with both in vitro and in vivo toxicity studies done to show that [2]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.