Abstract

Although the toxicity of pyraclostrobin (PYRA) to earthworms in artificial soil is well known, the toxicity of PYRA in farmland soils is yet to be explored in detail. Additionally, with more zinc oxide nanoparticles (nZnO) entering the soil environment, the risk of PYRA co-exposure with nZnO is increasing alarmingly. However, toxicity caused by this co-exposure of PYRA and nZnO is still unknown. Therefore, we assessed the biomarkers responses to reveal the toxicity of PYRA (0.1, 1, 2.5 mg/kg) on earthworms in farmland soils (black soil, fluvo-aquic soil, and red clay) and evaluated the biomarkers responses of Eisenia fetida exposed to PYRA (0.5 mg/kg)/PYRA+nZnO (10 mg/kg). Moreover, transcriptomic analysis was performed on E. fetida exposed to PYRA/PYRA+nZnO for 28 days to reveal the mechanism of genotoxicity. The Integrated Biomarker Responses (IBR) showed PYRA induced more severe oxidative stress and damage to E. fetida in farmland soils than that in artificial soil. The oxidative stress and damage induced by PYRA+nZnO were greater than that induced by PYRA. Transcriptomic analysis showed that PYRA and PYRA+nZnO significantly altered gene expression of both biological processes and molecular functions. These results provided toxicological data for PYRA exposure in three typical farmland soils and co-exposure with nZnO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.