Abstract

Hexafluoropropylene oxide dimer acid (HFPO-DA) and hexafluoropropylene oxide trimer acid (HFPO-TA) are considered as alternatives to perfluorooctanoic acid (PFOA). In this study, zebrafish were exposed to different concentrations of PFOA, HFPO-DA, and HFPO-TA (5 μg/L and 500 μg/L), and the toxic effects on oxidative damage, inflammation, and cell apoptosis in the gut were compared. Additionally, changes in gut metabolome profiles and microbial community structure were analyzed. The results revealed that exposures to HFPO-DA and HFPO-TA led to lower levels of oxidative damage compared to PFOA exposure. However, all three treatments had comparable effects on inflammation and apoptosis. The main biological pathways affected by all three exposures were lipid metabolism, nucleotide metabolism, amino acid metabolism, and environmental information processing. The effects on metabolome profiles were much higher for HFPO-DA and HFPO-TA compared to PFOA at a concentration of 5 μg/L. At a concentration of 500 μg/L, HFPO-DA and HFPO-TA showed similar effects to PFOA. This study also examined the Pearson correlations between gut microbiota and the toxic effects mentioned above. The abundance of specific apoptosis-related genera differed among the three target chemicals, suggesting they may act differently in inducing apoptosis. The correlations between HFPO-DA and HFPO-TA were mostly similar, which helps explain the similar effects observed in their respective treatment groups on metabolic profiles. Overall, this study indicates that HFPO-DA and HFPO-TA may not be safe alternatives to PFOA and provides valuable insights into their toxic effects and risk assessment in water environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call